Search results for "Gadolinium-doped ceria"

showing 2 items of 2 documents

Electrodeposition of supported gadolinium-doped ceria solid solution nanowires

2012

Gadolinium-ceria solid solution nanowires with tunable composition have been prepared through template cathodic electrodeposition from solutions containing Ce 3+Gd 3+ in a variable ratio. The employed template is Porous Anodic Alumina because it can function as thermal resistant separator supporting the nanowires if used as ionic conductor in Solid Oxide Fuel Cell (SOFC). Scanning Electron Microscopy of the deposited nanostructures revealed that the use of ethanol as solvent and metal chloride as electrolyte allowed to prepare continuous, compact and well defined nanowires with morphological features stable even after thermal treatment. EDX compositional analysis confirms the presence of bo…

Materials scienceRenewable Energy Sustainability and the EnvironmentNanowireNanowires Gadolinium-ceria X-ray diffraction analysis and Raman SpectroscopyCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGadolinium doped ceriaSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringCathodic electrodepositionMaterials ChemistryElectrochemistryPorous anodic aluminaGadolinium-doped ceriaSolid solutionIonic conductor
researchProduct

Large Area Deposition by Radio Frequency Sputtering of Gd0.1Ce0.9O1.95 Buffer Layers in Solid Oxide Fuel Cells: Structural, Morphological and Electro…

2021

We investigate the influence of position, under large circular sputtering targets, on the final electrochemical performance of 35 mm diameter button solid oxide fuel cells with sputter-deposited Gadolinium doped Ceria barrier layers, positioned in order to almost cover the entirety of the area associated with a 120 × 80 mm2 industrial cell. We compare the results obtained via structural and morphological analysis to the Electrochemical Impedance Spectroscopy (EIS) measurements performed on the button cells, disentangling the role of different parameters. The Atomic Force Microscopy analysis makes it possible to observe a decrease in the roughness values from the peripheral to the central zo…

TechnologyMaterials scienceScanning electron microscopeEnergy-dispersive X-ray spectroscopyOxideAnalytical chemistrySurface finishArticleimpedentiometric characterizationchemistry.chemical_compoundsputtered buffer layer morphologySputteringGeneral Materials Sciencelarge area depositionGadolinium-doped ceriaMicroscopyQC120-168.85TQH201-278.5Engineering (General). Civil engineering (General)Dielectric spectroscopyTK1-9971chemistryDescriptive and experimental mechanicsElectrical engineering. Electronics. Nuclear engineeringsputteringTA1-2040Current densityImpedentiometric characterization; Large area deposition; Sputtered buffer layer morphology; SputteringMaterials
researchProduct